Plugin MQTT

1. Description

This plugin works with plugin notify_change to send an MQTT message to an MQTT Message Broker whenever an event listed below occurs. It has been tested with the Mosquitto message broker. Plugin MQTT allows you to configure which events you want MQTT messages sent for, what the topic will be and the content of each message. It also allows you to configure the host and port of the MQTT broker.
2. Events monitored:
- Zone change (station turns on or off).

- Controller changed

- Options changed

- System reboots. Technically this is when the ospi service restarts.

- Station names change

- Programs change (includes deletes and toggling program on/off)

- Someone logs in.

Provision has also been made for up to three additional events in anticipation that other plugins may want to send MQTT messages. These three additional events simply need to be enabled in the MQTT plugin via data entry. (The plugin author will need to incorporate some additional code in the plugin). These are currently named Plugin 1, Plugin 2 and Plugin 3.
The system reboot event will need to send a complete set of messages so that applications utilising this data can initialise their system to the current state. This will be further documented when the design is complete.

3. MQTT Topics
The system allows the user to define the MQTT Topic for each event, and the content of the message. The default topics are shown in this screenshot of the data entry web page.
[image: image1.jpg]€ @ 1921680182:8080/mata c ~ python stritime

¥ A B O

3 Most Visited [Site Stats < Ian Wiese's.. @ Getting Started & Latest Headlines *% Connecting... "¥? PM Lodge housekeepe... || Node-red

@ prOGRAMS | RUN ONCE N PLUGH oPTIONS [STATIONS

MQTT messaging

This plugin configures MQTT message sending. For this plugin you need an MQTT broker accessible on your network, and the notify_change plugin to notify

changes and send the MQTT messages.

VSend MQTT message after: MQTT topic for: MQTT Message
-someone logs in: -someone logged in. OSPllg file
-zones change: -zone changes. OSPlize file
-when controller changes: -controller changes. OSPl/cc Time, gv.sd
-options change: -option changes. OSPl/oc Time ,gv.sd
-when system reboots: -system reboots. OSPIirb System rebooted at : ,Time ,gv.sd
-station names change: -station name changes. OSPl/sc Time, gv.snames,CPUtemp,CPUusage,RAMtotal, RAMfree, RAMt
-program changes: -program changes. OSPl/pc Time ,gv.ps
-plugin 1 changes: [-plugin 1 changes. OSPl/p1 Plugin 1 (not used)
-plugin 2 changes: [] -plugin 2 changes. OSPI/p2 Plugin 2 (not used)
-plugin 3 changes: [-plugin 3 changes. OSPI/p3 Plugin 3 (not used)
Your MQTT Brokers hostname or
P localhost
Your MQTT Brokers port: 1883
MQTT plugin is started
file
Status:
\

They are as follows:

	Event
	Default topic
	Enabled by default

	Zone change
	OSPI/zc
	Yes

	Logged in
	OSPI/lg
	Yes

	Controller changes
	OSPI/cc
	Yes

	Options change
	OSPI/oc
	Yes

	Station names change
	OSPI/sc
	Yes

	Program changes
	OSPI/pc
	Yes

	Plugin 1
	OSPI/p1
	No

	Plugin 2
	OSPI/p2
	No

	Plugin 3
	OSPI/p3
	No

	System reboots
	OSPI/rb
	Yes

4. Message payload
The content (payload) of the message is user definable. There are default values provided, but as the content that is required depends on the use that is made of the message these are only a guide. For example, if the intent is to log run times, the zone change events would need the station status, the time and probably the station names.

There are three ways to define the message payload.

1. The simplest is as a simple string. eg “Someone logged in”. This is not very useful on its own as other information from OSPi would probably be required eg the time they logged in.

2. The second way is to define a comma separated list which nominates the OSPi variables that are to be sent. This will be interpreted before the message is sent, so that references to OSPi variables will be expanded. For example. To send the station names, the following definition can be used:

 gv.snames
The OSPi variables are documented in the file gv_reference.txt in the main OSPi directory. The list of available variables in gv is generated at runtime, and the user specified variables are validated against this generated list.
Note: you cannot specify individual elements within a variable eg gv.snames[1].

There are several predefined items. Time is one of these. To include the current time in the message in a human readable format simply include the keyword Time (exactly like that). Eg to include station names and the time in your message use
Time,gv.snames

To add some descriptive text use something like
Station name changed at : ,Time,gv.snames

Other predefined items are

CPUtemp

CPUusage

RAMtotal

RAMfree

RAMused

Getlogin

Uptime

These have the obvious meaning conveyed by their name.
This system allows you to tailor the messages for your needs, and also to format the messages in such a way as to facilitate subsequent processing (eg in Node Red).

Note that it is not possible to include a comma in descriptive text for a message, as the text will be broken into two strings by the comma!

3. The third option is to place the definition in a file. In the MQTT data entry page the keyword “file” (in lower case letters) tells the system to get the message definition from a file. The files used are all in the /home/pi/OSPi/data directory and are named as follows:

	Event
	Filename

	Zone change
	mqtzcfile.dat

	Logged in
	mqtlgfile.dat

	Controller changes
	mqtccfile.dat

	Options change
	mqtocfile.dat

	Station names change
	mqtscfile.dat

	Program changes
	mqtpcfile.dat

	Plugin 1
	mqtp1file.dat

	Plugin 2
	mqtp2file.dat

	Plugin 3
	mqtp3file.dat

	System reboots
	mqtrbfile.dat

There is no need to create any of these files unless they are used. This plugin is provided with mqtlgfile.dat,mqtzcfile.dat and mqtscfile.dat and these can be used as examples.
This option has only been tested by specifying “file” as the first and only entry in the MQTT plugin data entry form. ie I am not sure if specifying something like “gv.snames,file” would work.
4. Example configuration
My interest is in logging run times of each station, and in receiving messages (via XBMC or email) when stations start and stop. To do this I need the following variables from gv.

· snames (so I can say “Front lawn sprinklers on” in the message rather than Station 1 on”

· mas (so I do not log or send messages for the master valve)

· nst (so I know how many stations to look at)

· sn (so I know the status of each station – running or not)

· the time of the event
There is no point in sending the station names each time a station turns on or off so the zone change event should only send the time, mas, nst, and sn. The station names change event should send nst, snames and the time.
(It is not desirable to time stamp the events as they are received in the application that receives the messages – in my case Node Red), because if Node Red is not running for a while, on startup it will receive a backlog of prior messages).

Therefore my definition of the message content for the Station names change event will be

Time, gv.snames
This will be sent to the MQTT broker defined in the MQTT plugin options screen using the topic defined on the same page. (Click on Plugins on the OSPi menu).

Before being sent the plugin will eval this message and will actually send the following:

{“Local time”: “Thu Nov 13 10:21:05 2014”,”Station names”: [”Master valve”, “Front Lawn”, ”Front garden bed”, “Side Lawn East”. “Side Lawn West”, “Backyard Lawn”, “Backyard vegetables”, “Unused”]}

I have put “file” – all lowercase without the quotes in the data entry screen and placed this definition in the file /home/pi/OSPi/data/mqtscfile.dat
For the Zone change event, my message configuration is
Time, gv.mas, gv.nst, gv.sn

This will actually be sent as:

{“gv.now”: “Thu Nov 13 10:21:05 2014”, “gv.mas”: 1, “gv.nst”: 7, “gv.sn”: [1,0,1,0,0,0,0,0]” assuming the front garden bed was being watered.

This definition was placed in file /home/pi/data/mqtzcfile.dat.

I could of course have included the station names in this message if it made things easier for my Node red application to process. Although it would add to the amount of data transferred, these events happen relatively infrequently.

To have these messages sent I would enable the Zone change and station change events in the MQTT plugin options screen, and I will use the default topics of OSPI/sc and OSPI/zc.

5. Message traffic
The volume of traffic should be relatively small. Once your system is setup, then changes will be very infrequent, with intervals of days. Systems with a large number of stations may generate a number of messages while the system is watering, but normal watering times will be minutes, rather than seconds. So it is not expected that this system will create problems with the volume of network traffic.

In addition, current programs requiring this sort of information such as the OSPi mobile application, and the normal web interface poll OSPi very frequently (every few seconds at least). If these systems are updated to get the information via MQTT, then the performance of OSPi should improve by a significant amount.
6. Message broker.
To use this system you must have an MQTT message broker accessible on your network. The system has been tested with the Mosquitto message broker, but it is reasonable to expect that any MQTT message broker would do. When installing the Mosquitto broker on a Raspberry Pi, do not install it from the Raspbian repository. For some reason this does not work. Here is a link to an installation procedure that does work.

Installing MQTT. Note – you only need to complete the basic install instructions here as the security certificates etc is for another project.

http://jpmens.net/2013/09/01/installing-mosquitto-on-a-raspberry-pi/
The MQTT message broker can be installed on the OSPi raspberry Pi, or elsewhere on your network.
Installing the message broker on your OSPi system MAY lead to problems with your SD card. The SD cards have a limited number of Read/Write cycles and I cannot tell how much read/write traffic the broker will generate. However given the relatively low frequency of events expected I am not concerned. Users will need to make this judgement for themselves.
7. Installation.
It is expected that the main repository will be updated with versions of the main application that support this functionality, and that the two plugins (mqtt.py and notify_change.py) will be provided in the plugins directory. These two plugins need to be made executable to activate them.

The system comes three event messages defined as coming from a file. These files (mqtscfile.dat, mqtlgfile.dat and mqtzcfile.dat) will be provided in the ./data directory.

The modifications to OSPi require you to install a package called blinker. This can be done from the command line by typing

pip install blinker

If you get errors from file permissions use sudo pip install blinker

Please check with the official installation instructions because Blinker may be included in the standard image in the future.

8. Plugin authors
Instructions will be provided for plugin authors to incorporate this system into their plugin. To get an idea of what is involved see this post.
https://opensprinkler.com/forums/topic/using-mqtt-to-log-data/page/2/#post-34383
Three unused event types are available at the moment. Any plugin author can use any of them. If any plugin author wishes to use one of them, they should advise me by posting on this forum, and I will provide a more descriptive name in the data entry form.
9. Node Red
My interest is in logging run times of individual stations to Emoncms. I will use Node Red to process the MQTT messages, reformatting the data to the format Emoncms and using the Emoncms node to send the data. I will also send Station start/stop messages to XBMC, and System reboot messages to email. I will provide the Node Red flows as an example for others. Note that it is not necessary to use Node Red, any application that can receive MQTT messages can process this data. One such application is MQTTWarn. However Node Red is fun to use!

10. Example Node red application

10.1 Description of Example Node Red application (under development)

I described my use of the event notification above ie

- logging run times of each station, and in receiving messages (via XBMC or email) when stations start and stop. To do this I need the following variables from gv.

· snames (so I can say “Front lawn sprinklers on” in the message rather than Station 1 on”

· mas (so I do not log or send messages for the master valve)

· nst (so I know how many stations to look at)

· sn (so I know the status of each station – running or not)

· the time of the event

My Node Red application would need to do the following:

Initialisation:

- Set up the station names in global variables.

- Set up the current status of stations in global variables

- set up the current running status of each zone in global variables

- Subscribe to the OSPI/sc topic and whenever the station names changed event occurs, update the global variables.

- Subscribe to the OSPI/zc topic and when a message is received do the following

· For each station check whether it has changed status.

· If it has changed status, then if it has turned on, send an email (or message to XBMC) saying “Front garden turned on at Thu Nov 13 10:21:05 2014”. I should save the time in a global variable.
· If it has changed status, if it has turned off,

· calculate the duration of the run time
· send an email (or message to XBMC) saying “Front garden turned off at Thu Nov 13 10:31:05 2014” after hh:mm:ss run time”.
· send the stop data to EmonCMS for logging. Emoncms expects a message in the format [0,0,10,0,0,0,0,0] if the third station ran for 10 minutes.
· also update the globals containing the current running status of each zone
There is some additional logic involving checking whether the station is a master valve. The master valve (if it is ignored) should be ignored.

The flows for this Node Red application will be provided with the final version of the plugin (so it can be used as an example).

In the example I will assume that my system is configured for the stations to run consecutively.

I will follow the naming convention used in the gv module in OSPi, ie
Context.global.snames will contain the latest copy of gv.snames and so on.

10.2 Initialisation of Node Red example
When first started any Node Red global variables will be undefined. This will make it impossible to detect changes in running status for example.
To get the initial status we can use the existing web API. Sending the command

http://ospihostaddress:8080/js?pw=password
from a web browser or from Node Red will return the following.

{"nstations": 8, "sn": [0, 0, 0, 0, 0, 0, 0, 0]}

Sending the command

http://ospihostaddress:8080/jn?pw=password will return the following

{"masop": [127], "stn_dis": [128], "ignore_rain": [1], "maxlen": 32, "snames": ["Master Valve ", "Side lawn east ", "Front lawn ", "Front garden ", "Side lawn west", "Front Side Lawn ", "Backyard 2 ", "Not used"]}

http://ospihostaddress:8080/jc?pw=password will return the following

{"sbits": [0, 0], "en": 1, "ps": [[0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0]], "rdst": 0, "loc": "My Town", "rs": 0, "mm": 1, "tu": "C", "lrun": [0, 0, 0, 0], "rd": 0, "devt": 1415888900, "ct": "53.0", "nbrd": 1}

http://ospihostaddress:8080/jo?pw=password will return the following

{"sdt": 0, "mtof": 0, "mas": 1, "rso": 1, "seq": 1, "mton": 0, "wl": 100, "ipas": 0, "reset": 0, "lg": 1, "tz": 80, "ext": 0, "urs": 0, "fwv": "2.1.5-OSPi"}

http://ospihostaddress:8080/jo?pw=password will return the following

{"mnp": 9999, "pd": [[1, 17, 0, 360, 420, 60, 600, 126]], "nboards": 1, "nprogs": 0}

These calls can be used to initialise the global variables you require for your application. Currently the mobile app uses these calls to poll continuously for this data. By using Node Red and MQTT we can avoid this continuous polling, and simply wait until we receive a message something has changed dramatically reducing the traffic.
It could be wise to reinitialise once an hour or so in case we have missed a message. This is considered standard practice in real time data acquisition systems relying on “report by exception” as this application does. This can also form the basis of an outage reporting system
These calls are described in the document os_fw210_api-1.pdf available on the Opensprinkler web site.

11. Testing

To test your message definitions:

Use the MQTT plugin to configure the MQTT messages you want and their content. When you get MQTT messages there are apps for IOS and Android that will allow you to subscribe to MQTT topics and view the messages. MyMQTT is such an Android app.

You could also set up a Node-Red application which uses the MQTT input node to subscribe to the topics you have defined and link these nodes to say an email output node so that the MQTT messages get sent to your email.
If you misspell the names of a gv variable when configuring the MQTT plugin, the variable name won’t be recognised and it will be treated as a text string. For example if you misspelt gv.snames as gv.sanmes then you would see the text string “gv.sanmes” in the message body instead of the list of station names.

12. Timeframe
I expect the plugins to be available for consideration to be incorporated into OSPi before the end of November 2014. As soon as I get a stable version for testing I will post the source to this forum as attachments.

13. Specific changes reported on
The module webpages.py which handles most (all?) of the data entry for OSPi has been modified to watch for changes and send an appropriate signal whenever changes are made. These signals are intercepted in notify_changes.py and the specified MQTT message sent. These are the gv variables that when modified cause specific signals.
13.1 Station names change

When one of these variables is updated, the Station Change signal is sent.

gv.sd[‘ir’]

gv.sd[‘mo’]

gv.snames

13.2 Controller change

When one of these variables is updated, the Controller Change signal is sent.

gv.srvals

gv.sd[‘rd’]

gv.sd[‘rdst’]

13.3 Options change

When one of these variables is updated, the Options Change signal is sent.

Password

gv.sd[‘loc’]

gv.sd[‘name’]

gv.sd[‘tz’]

gv.sd[‘tf’]

gv.sd[‘nbrd’]

gv.sd[‘nst’]

gv.sd[‘htp’]

gv.sd[‘sdt’]

gv.sd[mas’]

gv.sd[‘mton’]

gv.sd[‘mtoff’]

gv.sd[‘wl’]

gv.sd[‘urs’]

gv.sd[‘seq’]

gv.sd[‘rst’]

gv.sd[‘lg’]

gv.sd[‘ir’]

The remainder are fairly straightforward.

Regards

Ian Wiese

ianw at iiNet.net.au

