Plugin MQTT

1. Description
This plugin works with the plugin notify_change to send an MQTT message to an MQTT Message Broker whenever an event listed below occurs. The message can be configured to contain text strings, time stamps and the content of most OSPi internal variables such as station status, or station names. This allows external programs to provide additional functionality, such as logging of configuration changes, and station run times to an external database. It also provides a more efficient alternative for external programs instead of continuously polling OSPi to keep up to date with the internal status of the system.
A sample Node Red application is provided to demonstrate the possibilities these plugins open up. This sample application logs station runtimes to an external database (Emoncms), and sends notification of system reboots, people logging in, station start and stops and station name changes to email and to XBMC (for display on the TV). It also interrogates the OSPi system for most significant program internal variables and copies these to corresponding Node Red global variables. This occurs on startup to establish the initial status of the system, and on an hourly basis from then on to ensure lost messages do not cause the systems to diverge over time. This hourly “heartbeat” will in future be used to monitor the availability of the OSPi system.
It has been tested with the Mosquitto message broker. Plugin MQTT allows you to configure which events you want MQTT messages sent for, what the topic will be and the content of each message. It also allows you to configure the host and port of the MQTT broker.
2. Events monitored:
- Zone change (station turns on or off).

- Controller changed

- Options changed

- System reboots. Technically this is when the ospi service restarts.

- Station names change

- Programs change (includes deletes and toggling program on/off)

- Someone logs in.

Provision has also been made for up to three additional events in anticipation that other plugins may want to send MQTT messages. These three additional events simply need to be enabled in the MQTT plugin via data entry. (The plugin author will need to incorporate some additional code in the plugin). These are currently named Plugin 1, Plugin 2 and Plugin 3.
The system reboot event will need to send a complete set of data so that applications utilising this data can initialise their system to the current state. This is user definable. The message content for the reboot event should include all the data items mentioned in section 4.2..

3. Installation.
It is expected that the main repository will be updated with versions of the main application that support this functionality, and that the two plugins (mqtt.py and notify_change.py) will be provided in the plugins directory. These two plugins need to be made executable to activate them.

You will need the Blinker Test version of OSPi (see https://opensprinkler.com/forums/topic/using-mqtt-to-log-data/page/2/#post-34412) for instructions – at this stage I am not up to date enough with Git to upload it to the repository, so you will have to use the attached files.
Before starting make a copy of the contents of your /home/pi/OSPi/data directory. This directory contains the details of your current configuration, and if you want to revert to your current system after testing the new plugins, it is wise to have a copy of these in case things go wrong!

In the interim, these files must be placed in the /home/pi/OSPi/plugins directory and made executable. The file MQTT.html must be placed in the templates directory (ie /home/pi/OSPi/templates). You will need the version of notify_change.py I have provided, not the version on the Blinker test version of the Github repository.
The system as I have configured it comes three event messages defined as coming from a file. These files (mqtscfile.dat, mqtlgfile.dat and mqtzcfile.dat) must be placed in the ./data directory. If you don’t want to use these, then use the MQTT configuration page to change the message content of SC, LG, and ZC events so they don’t use the file command.

The modifications to OSPi require you to install a package called blinker. This can be done from the command line by typing

pip install blinker

If you get errors from file permissions while doing this use sudo pip install blinker

Please check with the official installation instructions when they become available because Blinker may be included in the standard image in the future.

4. MQTT Topics
The system allows the user to define the MQTT Topic for each event, and the content of the message. The default topics are shown in this screenshot of the data entry web page.
[image: image1.jpg]OpenSprinkler OPENSPRINKLER PI

(@] Procrams J run once opTIONS W STATIONS

MQTT messaging
This plugin configures MQTT message sending. For this plugin you need an MQTT broker accessible on your network, and the notify_change plugin to notify changes and send the MQTT messages.
Send MQTT message after: MQTT topic for MQTT Message
-someone logs in: [v] -someone logged in. 0SPlig file
-zones change: [¥] -zone changes. 0sPlize fle
-when controller changes: ¥ -controller changes. OSPlicc Time, gv.sd
-options change: [7] -option changes. OSPlioc Time ,gv.sd
-when system reboots: [v] -system reboots. OSPlrb System rebooted at - | Time ,gv.sd
-station names change: [v] -station name changes. OSPlisc Time, gv.snames,CPUtemp CPUusage RAMtotal RAMfree, RAMuse
-program changes [/ -program changes. OSPlpc Time gv.ps
-plugin 1 changes [-plugin 1 changes. OSPlip1 Plugin 1 (not used)
-plugin 2 changes: [] -plugin 2 changes. OSPlp2 Plugin 2 (not used)
-plugin 3 changes: [] -plugin 3 changes. OSPIip3 Plugin 3 (not used)

‘Your MQTT Brokers hostname or IP: 192.168.0.182
Your MQTT Brokers port: 1883
MQTT QOS (0.1,0r 2) 0

MQTT Retain? True if checked: =]

MOTT plugin is started
file

Status:

They are as follows:

	Event
	Default topic
	Enabled by default

	Zone change
	OSPI/zc
	Yes

	Logged in
	OSPI/lg
	Yes

	Controller changes
	OSPI/cc
	Yes

	Options change
	OSPI/oc
	Yes

	Station names change
	OSPI/sc
	Yes

	Program changes
	OSPI/pc
	Yes

	Plugin 1
	OSPI/p1
	No

	Plugin 2
	OSPI/p2
	No

	Plugin 3
	OSPI/p3
	No

	System reboots
	OSPI/rb
	Yes

5. Message payload
The content (payload) of the message is user definable as a series of comma separated parameters. There are default values provided, but as the content that is required depends on the use that is made of the message these are only a guide. For example, if the intent is to log run times, the zone change events would need the station status, the time and probably the station names.

There are three ways to define the message parameters.

1. The simplest is to define a simple string. eg “Someone logged in”. This is not very useful on its own as other information from OSPi would probably be required eg the time they logged in. (Quotes are not necessary).
2. The second way is to define a comma separated list which nominates the OSPi variables that are to be sent. This will be interpreted before the message is sent, so that references to OSPi variables will be expanded. For example. To send the station names, the following definition can be used:

 gv.snames
The OSPi variables are documented in the file gv_reference.txt in the main OSPi directory. The list of available variables in gv is generated at runtime, and the user specified variables are validated against this generated list.
Note: you cannot specify individual elements within a variable eg gv.snames[1] or gv.sd[‘en”].

The following is a list of the variables I considered “useful” and these are the variables sent via the web api call /gv?pw=password. :
gv.gmtnow

gv.lrun,

gv.now,

gv.pd,

gv.pon,

gv.rovals,

gv.ps,

gv.rs,

gv.sbits,

gv.scount,

gv.sd,

gv.snames,

gv.srvals

These can also be retrieved from OSPi using the URL http://ospi-host:8080/gv. This facility has been provided to facilitate Node Red programs – or any other external program - establishing an initial state of the OSPi system.

There are several predefined items. Time is one of these. To include the current time in the message in a human readable format simply include the keyword Time (exactly like that). Eg to include station names and the time in your message use
Time,gv.snames

To add some descriptive text use something like
Station name changed at : ,Time,gv.snames

Other predefined items are

CPUtemp

CPUusage

RAMtotal

RAMfree

RAMused

Getlogin

Uptime

These have the obvious meaning conveyed by their name.
This system allows you to tailor the messages for your needs, and also to format the messages in such a way as to facilitate subsequent processing (eg in Node Red).

Note that it is not possible to include a comma in descriptive text for a message, as the text will be broken into two strings by the comma!

3. The third option is to place the definition in a file. In the MQTT data entry page the keyword “file” (in lower case letters) tells the system to get the message definition from a file. The files used are all in the /home/pi/OSPi/data directory and are named as follows:

	Event
	Filename

	Zone change
	mqtzcfile.dat

	Logged in
	mqtlgfile.dat

	Controller changes
	mqtccfile.dat

	Options change
	mqtocfile.dat

	Station names change
	mqtscfile.dat

	Program changes
	mqtpcfile.dat

	Plugin 1
	mqtp1file.dat

	Plugin 2
	mqtp2file.dat

	Plugin 3
	mqtp3file.dat

	System reboots
	mqtrbfile.dat

There is no need to create any of these files unless they are used. This plugin is provided with mqtlgfile.dat,mqtzcfile.dat and mqtscfile.dat and these can be used as examples.
This option has only been tested by specifying “file” as the first and only entry in the MQTT plugin data entry form. ie I am not sure if specifying something like “gv.snames,file” would work.
4. Example configuration
My interest is in logging run times of each station, and in receiving messages (via XBMC or email) when stations start and stop. To do this I need the following variables from gv.

· snames (so I can say “Front lawn sprinklers on” in the message rather than Station 1 on”

· mas (so I do not log or send messages for the master valve)

· nst (so I know how many stations to look at)

· sn (so I know the status of each station – running or not)

· the time of the event
There is no point in sending the station names each time a station turns on or off so the zone change event should probably only send the time, mas, nst, and sn. The station names change event should send nst, snames and the time.
It is not desirable to time stamp the events as they are received in the application that receives the messages – in my case Node Red), because if Node Red is not running for a while, on startup it will receive a backlog of prior messages. Therefore I would use the Time keyword when defining the message content so that OSPi will timestamp the message.
Therefore my definition of the message content for the Station names change event will be

Time, gv.snames
This will be sent to the MQTT broker defined in the MQTT plugin options screen using the topic defined on the same page. (Click on Plugins on the OSPi menu).

Before being sent the plugin will “eval” this message and will actually send the following:

Thu Nov 13 10:21:05 2014 [”Master valve”, “Front Lawn”, ”Front garden bed”, “Side Lawn East”. “Side Lawn West”, “Backyard Lawn”, “Backyard vegetables”, “Unused”]
I have put “file” – all lowercase without the quotes in the data entry screen and placed this definition in the file /home/pi/OSPi/data/mqtscfile.dat
For the Zone change event, my message configuration is
Time, gv.mas, gv.nst, gv.sn

This will actually be sent as:

Thu Nov 13 10:21:05 2014, 1, 7, [1,0,1,0,0,0,0,0]
assuming the front garden bed was being watered.

This definition was placed in file /home/pi/data/mqtzcfile.dat.

I could of course have included the station names in this message if it made things easier for my Node red application to process. Although it would add to the amount of data transferred, these events happen relatively infrequently and I only have 7 stations plus the master valve.

To have these messages sent I would enable the Zone change and station change events in the MQTT plugin options screen, and I will use the default topics of OSPI/sc and OSPI/zc.

5. MQTT Options

The other options that can be specified on the MQTT Options page are

· MQTT Broker address (hostname or IP)

· MQTT Port (1883 by default)

· MQTT QOS (default = 0)

· MQTT Retain (False by default)

The MQTT QOS and Retain options were added during testing, because the Retain = True option was not workable during testing – old messages kept appearing, and it was difficult to work out what was happening. In production it may be advisable to use Retain = True so that if your client (Node Red) reconnects it is brought up to date by receiving the last message. Unfortunately the Node Red implementation of MQTT doesn’t allow you to configure the “clean session” option – it is enabled by default.
QOS = 0: means that the message will be delivered at most once. It may not be delivered. Its delivery across the network is not acknowledged. The message is not stored. The message could be lost if the client is disconnected, or if the server fails. QoS0 is the fastest mode of transfer. It is sometimes called "fire and forget".

The MQTT protocol does not require servers to forward publications at QoS0 to a client. If the client is disconnected at the time the server receives the publication, the publication might be discarded, depending on the server implementation.
QOS = 1: The message is always delivered at least once. It might be delivered multiple times if there is a failure before an acknowledgment is received by the sender. The message must be stored locally at the sender, until the sender receives confirmation that the message has been published by the receiver. The message is stored in case the message must be sent again.

QOS = 2: The message is always delivered exactly once. The message must be stored locally at the sender, until the sender receives confirmation that the message has been published by the receiver. The message is stored in case the message must be sent again. QoS2 is the safest, but slowest mode of transfer. A more sophisticated handshaking and acknowledgement sequence is used than for QoS1 to ensure no duplication of messages occurs.
Retain - can be true or false.

Retain = false means that a broker will not hold onto the message so that any subscribers arriving after the message was sent will not see the message. By setting the retain flag true, the message is held onto by the broker, so when the late arrivers connect to the broker or clients create a new subscription they get all the relevant retained messages.
Another way of describing the retained message is the "last known
good value".

Clean vs Dirty sessions.

If your client eg Node Red sets the "clean session" flag to false when it connects, the broker will keep the subscription active even after the client disconnects.
It will also queue any new messages it receives for the client, but
only if they have QoS>0. There isn't an unlimited queue. When your
client reconnects it will receive all of the queued messages.

Unfortunately Node Red does not currently implement this feature ie it always sets the flag true.
Topics

The MQTT options screen allows the topic to be specified for each type of event.

The following is a copy of the information at

http://www.eclipse.org/paho/files/mqttdoc/Cclient/wildcard.html

Every MQTT message includes a topic that classifies it. MQTT servers use topics to determine which subscribers should receive messages published to the server.

Consider the server receiving messages from several environmental sensors. Each sensor publishes its measurement data as a message with an associated topic. Subscribing applications need to know which sensor originally published each received message. A unique topic is thus used to identify each sensor and measurement type. Topics such as SENSOR1TEMP, SENSOR1HUMIDITY, SENSOR2TEMP and so on achieve this but are not very flexible. If additional sensors are added to the system at a later date, subscribing applications must be modified to receive them.

To provide more flexibility, MQTT supports a hierarchical topic namespace. This allows application designers to organize topics to simplify their management. Levels in the hierarchy are delimited by the '/' character, such as SENSOR/1/HUMIDITY. Publishers and subscribers use these hierarchical topics as already described.

For subscriptions, two wildcard characters are supported:

· A '#' character represents a complete sub-tree of the hierarchy and thus must be the last character in a subscription topic string, such as SENSOR/#. This will match any topic starting with SENSOR/, such as SENSOR/1/TEMP and SENSOR/2/HUMIDITY.

· A '+' character represents a single level of the hierarchy and is used between delimiters. For example, SENSOR/+/TEMP will match SENSOR/1/TEMP and SENSOR/2/TEMP.

Publishers are not allowed to use the wildcard characters in their topic names.

Deciding on your topic hierarchy is an important step in your system design.

6. Message traffic
The volume of traffic should be relatively small. Once your system is setup, then changes will be very infrequent, with intervals of days. Systems with a large number of stations may generate a number of messages while the system is watering, but normal watering times will be minutes, rather than seconds. So it is not expected that this system will create problems with the volume of network traffic.

In addition, current programs requiring this sort of information such as the OSPi mobile application, and the normal web interface poll OSPi very frequently (every few seconds at least). If these systems are updated to get the information via MQTT, then the performance of OSPi should improve by a significant amount.
7. Message broker.
To use this system you must have an MQTT message broker accessible on your network. The system has been tested with the Mosquitto message broker, but it is reasonable to expect that any MQTT message broker would do. When installing the Mosquitto broker on a Raspberry Pi, do not install it from the Raspbian repository. For some reason this does not work. Here is a link to an installation procedure that does work.

Installing MQTT. Note – you only need to complete the basic install instructions here as the security certificates etc component of this install is for another project and not necessay for OSPi.

http://jpmens.net/2013/09/01/installing-mosquitto-on-a-raspberry-pi/
The MQTT message broker can be installed on the OSPi raspberry Pi, or elsewhere on your network. Installing it on the OSPi system would mean it is always available whenever OSPi is available.
Installing the message broker on your OSPi system MAY lead to problems with your SD card. The SD cards have a limited number of Read/Write cycles and I cannot tell how much read/write traffic the broker will generate. However given the relatively low frequency of events expected I am not concerned. Users will need to make this judgement for themselves. I would expect that retained messages will result in more read/write activity.
If you wish to delete retained messages from the broker you send a message with zero length payload and Retain = true to that topic. Type the following from the command line if you are using the Mosquitto broker.
sudo mosquito_pub –t “Topic” –r –n

where “Topic” is the topic you wish to clear.

While testing it is probably best to set Retain = false in the MQTT messages.

8. Plugin authors
Instructions will be provided for plugin authors to incorporate this system into their plugin. To get an idea of what is involved see this post.
https://opensprinkler.com/forums/topic/using-mqtt-to-log-data/page/2/#post-34383
Three unused event types are available at the moment. Any plugin author can use any of them. If any plugin author wishes to use one of them, they should advise me by posting on this forum, and I will provide a more descriptive name in the data entry form.
9. Node Red
My interest is in logging run times of individual stations to Emoncms. I will use Node Red to process the MQTT messages, reformatting the data to the format Emoncms and using the Emoncms node to send the data. I will also send Station start/stop messages to XBMC, and System reboot messages to email. I will provide the Node Red flows as an example for others. Note that it is not necessary to use Node Red, any application that can receive MQTT messages can process this data. One such application is MQTTWarn. However Node Red is more fun to use!

When configuring the Node Red MQTT input node, specify a client ID eg Opensprinkler, so that the MQTT broker will know it is the same client reconnecting.
I have installed Node Red on the same Raspberry Pi that runs Emoncms. This was because that system has an external hard drive. However it also allows me to use Node Red to poll OSPi (hourly), and provide a warning if the OSPi system is down. Node Red could run on other systems. To install Node Red on a Raspberry Pi, see

https://learn.adafruit.com/raspberry-pi-hosting-node-red/what-is-node-red Adafruit also have a tutorial on installing node red.

10. Example Node red application

10.1 Description of Example Node Red application.
I described my use of the event notification above (Section 4) ie

- logging run times of each station, and in receiving messages (via XBMC or email) when stations start and stop. To do this I need the following variables from gv.

· snames (so I can say “Front lawn sprinklers on” in the message rather than Station 1 on”

· mas (so I do not log or send messages for the master valve)

· nst (so I know how many stations to look at)

· sn (so I know the status of each station – running or not)

· the time of the event

My Node Red application does the following:

1. Initialisation:

- Set up the station names in global variables.

- Set up the current status of stations in global variables

- set up the current running status of each zone in global variables

This is achieved by using the web API command http://ospi address:port/gv?pw=xxxxx. This retrieves all the gv variables mentioned in section 4.2 and places them in global variables as follows.

gv.snames goes in context.global.snames

gv.sd goes in context.global.sd

and so on. Context.global.variable is the Node Red way of specifying globals that are available across functions in Node Red.

2. Subscribe to the OSPI/sc topic and whenever the station names changed event occurs, update the global variables. An email will advise me of the change, and a notification is sent to XBMC.
3. Subscribe to the OSPI/zc topic and when a message is received do the following

· For each station check whether it has changed status.

· If it has changed status, then if it has turned on, send an email (or message to XBMC) saying “Front garden turned on at Thu Nov 13 10:21:05 2014”. I should save the time in a global variable.
· If it has changed status, if it has turned off,

· calculate the duration of the run time
· send an email (or message to XBMC) saying “Front garden turned off at Thu Nov 13 10:31:05 2014” after hh:mm:ss run time”.
· send the stop data to EmonCMS for logging. Emoncms expects a message in the format [0,0,10,0,0,0,0,0] if the third station ran for 10 minutes.
· also update the globals containing the current running status of each zone
There is some additional logic involving checking whether the station is a master valve. The master valve (if it is ignored) should be ignored.

4. Subscribe to the OSPI/lg, and OSPI/rb topics and when these occur send an email, and send a notification to XBMC.

The flows for this Node Red application are provided so they can be used as an example.

Configuration needed for sample Node Red application.

In the example I assume that my system is configured for the stations to run consecutively.

The XBMC interface is available from
https://github.com/matbor/mqtt2xbmc-notifications
The documentation is straightforward.

You will need to edit autoexec.py to subscribe to the correct MQTT topic

10.2 Configuration of sample Node Red application.

To use the Node Red application you need to configure the following nodes.
Injection Node labelled Hourly polling. The string injected must contain a string as follows

Ospi-address,ospi-port,OSPi-password

MQTT Out node labelled Errors in API. Next to the Broker field is a pencil symbol. Click on this and add your MQTT Broker address to the list. If the user name are different on your system configure these. Use this configuration for all MQTT nodes.

All email nodes. Configure these to point to your email address and server. I have only tested this with the gmail server configured.

Emoncms output node. If you are using this you will need to configure your Emoncms api key and node number. As configured it will send all station runtimes each time to Node 25.

10.3 Internal initialisation of Node Red example (ie by the Node Red application)
When first started any Node Red global variables will be undefined. This will make it impossible to detect changes in running status for example.
To get the initial status we can use the command

http://ospihostaddress:8080/gv?pw=password
from a web browser or from Node Red will return the following.

{"sbits": [0, 0], "pon": null, "gmtnow": 1416259748.974095, "srvals": [0, 0, 0, 0, 0, 0, 0, 0], "scount": 0, "now": 1416288548, "rovals": [0, 0, 0, 0, 0, 0, 0], "ps": [[0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0]], "rs": [[0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0]], "snames": ["Master Valve Long Blue", "Side lawn east yellow", "Front lawn Short Blue", "Front garden White", "Side lawn west red", "Front Side Lawn Purple", "Backyard 2 Green", "Not used"], "lrun": [0, 0, 0, 0], "pd": [[1, 17, 0, 1200, 1260, 60, 600, 126]], "sd": {"sdt": 0, "rsn": 0, "en": 1, "bsy": 0, "seq": 1, "lg": 1, "mton": 0, "wl_weather": 111.3, "ir": [1], "snlen": 32, "mas": 1, "nopts": 13, "tu": "C", "pwd": "b3BlbmRvb3I=", "ipas": 0, "htp": 8080, "rst": 1, "password": "602e8421a77a2c9e1dde75bdc7c862118e7dfee8", "nst": 8, "rdst": 0, "loc": "Dunsborough ", "nprogs": 1, "tz": 80, "name": "OpenSprinkler Pi ", "rs": 0, "mm": 0, "mo": [127], "rbt": 0, "show": [127], "mtoff": 0, "rd": 0, "theme": "basic", "wl_monthly_adj": 100, "lr": 100, "wl": 100, "urs": 0, "tf": 1, "salt": "l}g$Pixw.80:wh|/}sX'9T:ChI]sRqhNmDx+nNMz]s7QJm_l)s$=SV)tE_JKy=Q4", "nbrd": 1}}

This call can be used to initialise the global variables you require for your application. Currently the mobile app uses similar calls to poll continuously for this data. By using Node Red and MQTT it could avoid this continuous polling, and simply wait until a message is received saying “ something has changed” thereby substantially reducing the traffic. (Push vs Pull notifications)
It could be wise to reinitialise once an hour or so in case we have missed a message. This is considered standard practice in real time data acquisition systems relying on “report by exception” as this application does. This can also form the basis of an outage reporting system
The sample Node Red application runs the initialisation flow every hour for this reason. This could form the basis of an independent “watchdog” if the Node Red application is run on a second machine.
11. Testing hints for the OSPi plugins:
To test your message definitions:

Use the MQTT plugin to configure the MQTT messages you want and their content. When you get MQTT messages there are apps for IOS and Android that will allow you to subscribe to MQTT topics and view the messages. MyMQTT is such an Android app.

You could also set up a Node-Red application which uses the MQTT input node to subscribe to the topics you have defined and link these nodes to say an email output node so that the MQTT messages get sent to your email.
If you misspell the names of a gv variable when configuring the MQTT plugin, the variable name won’t be recognised and it will be treated as a text string. For example if you misspelt gv.snames as gv.sanmes then you would see the text string “gv.sanmes” in the message body instead of the list of station names.

During testing it is advisable to set Retain = false in the MQTT configuration screen.

12. Specific changes reported on for each event
The module webpages.py which handles most (all?) of the data entry for OSPi has been modified to watch for changes and send an appropriate signal whenever changes are made. These signals are intercepted in notify_changes.py and the specified MQTT message sent. These are the gv variables that when modified cause specific signals.
12.1 Station names change

When one of these variables is updated, the Station Change signal is sent.

gv.sd[‘ir’]

gv.sd[‘mo’]

gv.snames

12.2 Controller change

When one of these variables is updated, the Controller Change signal is sent.

gv.srvals

gv.sd[‘rd’]

gv.sd[‘rdst’]

12.3 Options change

When one of these variables is updated, the Options Change signal is sent.

Password

gv.sd[‘loc’]

gv.sd[‘name’]

gv.sd[‘tz’]

gv.sd[‘tf’]

gv.sd[‘nbrd’]

gv.sd[‘nst’]

gv.sd[‘htp’]

gv.sd[‘sdt’]

gv.sd[mas’]

gv.sd[‘mton’]

gv.sd[‘mtoff’]

gv.sd[‘wl’]

gv.sd[‘urs’]

gv.sd[‘seq’]

gv.sd[‘rst’]

gv.sd[‘lg’]

gv.sd[‘ir’]

The remainder are fairly straightforward.

Regards

Ian Wiese

ianw at iiNet.net.au

